Alpert Multiwavelets and Legendre--Angelesco Multiple Orthogonal Polynomials
نویسندگان
چکیده
منابع مشابه
Müntz Systems and Orthogonal Müntz - Legendre Polynomials
The Müntz-Legendre polynomials arise by orthogonalizing the Müntz system {xxo, xx¡, ...} with respect to Lebesgue measure on [0, 1]. In this paper, differential and integral recurrence formulae for the Müntz-Legendre polynomials are obtained. Interlacing and lexicographical properties of their zeros are studied, and the smallest and largest zeros are universally estimated via the zeros of Lague...
متن کاملMeeting on Modern Aspects of Analysis and Scientific Computing
Multiple orthogonal polynomials are polynomials in one variable that satisfy orthogonality conditions with respect to several measures. I will briefly give some general properties of these polynomials (recurrence relation, zeros, etc.). These polynomials have recently appeared in many applications, such as number theory, random matrices, non-intersecting random paths, integrable systems, etc. I...
متن کاملMultiple orthogonal polynomials
Results on multiple orthogonal polynomials will be surveyed. Multiple orthogonal polynomials are intimately related to Hermite–Pad e approximants and often they are also called Hermite–Pad e polynomials. Special attention will be paid to an application of multiple orthogonal polynomials and to analytic theory of two model families of general multiple orthogonal polynomials, referred to as Angel...
متن کاملLegendre polynomials and supercongruences
Let p > 3 be a prime, and let Rp be the set of rational numbers whose denominator is not divisible by p. Let {Pn(x)} be the Legendre polynomials. In this paper we mainly show that for m,n, t ∈ Rp with m 6≡ 0 (mod p), P[ p 6 ](t) ≡ − (3 p ) p−1 ∑ x=0 (x3 − 3x + 2t p ) (mod p)
متن کاملOrthogonal Multiwavelets of Multiplicity Four
K e y w o r d s W a v e l e t s , Multiwavelets, Approximation order, Refinement equations, Subdivision. 1. I N T R O D U C T I O N Wavele t t heo ry is based on the idea of mul t i r eso lu t ion analys is (MRA) . Usually, an M R A is gene r a t e d by one scal ing funct ion. However, such wavelets canno t possess t he p rope r t i e s of shor t s u p p o r t , s y m m e t r y or an t i symmet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Mathematical Analysis
سال: 2017
ISSN: 0036-1410,1095-7154
DOI: 10.1137/16m1064465